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ABSTRACT

The standard specifications of logic bistable devices do not specify
the bhehavior under conditions in which the input is leogically undefined
or in which certain kinds of multiple input changes occur. These con-
ditions are unavoidable in logic synchronizers and arbiters. A general
deterministic model of bistable devices is proposed, consisting of a non-
linear differential system with some adequate properties, Analysis of this
model shows that bistable devices can be driven into a logically undefined
region by certain admissible inputs and can remain in this region for an
unbounded length of time.

1. INTRODUCTION

This paper is concerned with the behavior of logic bistable elements
under input conditions that ocecur unavoidably in synchronizers that mediate
comnunications between systems that do not share a common time refererice,
or in asynchronous arbiters that must allocate a resource to one of several
users whose competing requests may occur at the same time. The input may
be a weak or short pulse, or certain kinds of multiple input changes may
occur more or less simultaneously. The resulting misbehavior of these cir-
cuits [1] produces serious system control errors. The paper is based on
part of the doctoral dissertation written by the first author [2), in which
the following concepts are applied to tunnel-diode and transistor flip-
flops. Here we consider only a noise-~free or deterministic model of a
bistable device; in [2] the effect of additive white noise is discussed
qualitatively.

In Figures 1 and 2 we have reproduced bistable output waveforms repor-
ted in [1]. The pictures at the left have been obtained using a sampling
scope (1000dots/division), while the traces at the right are real-~time
sample responses. The ocutput hangs up at a logically undefined voltage
level (MC1016) or oscillates within the logically undefined region under
the given input conditions, The time until logical resolution can be much
larger than the switching time with ideal inputs.

This behavior is particularly serious when the output of the bistable
device must drive, in parallel, subsequent logical circuits; some circuits
may be activated but not others, creating a conflict or paradox in the
logical systemn.

Since there is experimental evidence that the larger resclution times
are of low probability, the problem may be alleviated by providing a delay
time, fixed or depending on a threshold sensing device,

2. MATHEMATICAL MODEL OF A BISTABLE SYSTEM

Our deterministic mathematical model for bistable elements consists
of a system of time-invariant nonlinear differential equations driven by a
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piecewise continuous bounded function. It is assumed that the model
exhibits the following fundamental properties:

(a) ‘There exists a constant input function for which the system has
two asymptotically stable equilibrium points (see, for example,
{3), p. 58}.

(b} “he set of input functions contains a subset whose elements are
able to steer the system, in a finite time interval, from a
neighborhood of one of the equilibrium points to a neighborhood
of the other, and a second subset whose elements are able to
steer the system, in the same time interval, in the reverse dir-
ection, Those neighborhoods correspond to the "0" and "1" binary
logical conditions of the bistable system. They will be referred
to as logical sets.

In what follows and in the next sections we will be referring often to
the concepts and the theorems of dynamical systems theory [3].

Tn state representation the model is expressed as the differential
system :

x(t) =
x(0)

Ix{t}, El_(t)] (1)

il

£

£

where

{1) x(t)G R represents the state of the system at time t ¢ [O,T].

(2) u = {u(t), telo, 7]} is an element in the set U of inputs consisting
of m~vector—valued piecewise-continuous functions defined on the
interval [0,7T) such that

a, j_ui(t) f-bi' i=l,2,...,m

for any teé [0,T] where the ai's and bi's are real numbers. The
Cartesian product of the sets [ai,bi}, i=1,2,...,m will be dencted
by §1.

(3) (R'xQ > R is a continuous mapping satisfying the conditions needed
to guarantee that the solution Y[t,§,u] of the system (1) is unique on
[0,7] for each EE.R and each ue U, and continuous on [0, TI1XROxU in
the following sense:

(1) For u U, t,s€¢ [0,T] and £,n¢€ Rn, given any & >0 there exists
6“0 such that

|y [t,E,u] - by [s,n,ul| <e whenever [t-s] + Z |£ -n, [ < 3§

i= l i=1
where & and nyr i=1,2,...,n, are the components of § and n
respectively.

{(ii) ¥Yor te¢ [0,T], E}ERH and uv €U, given any € >0 there exists a
§ > 0 such that

n
X Iﬂil[t;_ﬁ_:g] - Ull[t;i;gll < £,
i=1
wheneveyr
ot
£ lu, (£)=v, (t) |dt < 8.
i=1 * *
. 0 :
Furthermore, the following assumptions are included in order to
satisfy the conditions for bistability.

{4) There exists a constant input function {g,te (0,71} e € that, extended
in the obvious way to the entire real line R, determines the




auvtonomous differential equation
x(t) = £lx(t),c] (2)
x{0) £

with unique and continuous solutions yo(t £) on rxR” and with two dif-
ferent asymptotically stable equilibrium points in R, namely, €y and
e,. The corresponding regions of attraction ({31,p. 57) are denoted
respectively by Aj; and Ap. The system (2) is termed the autonomous
subsysten. ’

(5) There exist subsets U; and Uy in U, and neighborhoods N(ej)C Aj
and N{es)( Ay of ey and e; respectively, such that

K[T;E_fUl]C A

Ul

2
and
K{T;Q,UZIC. Ay

for any _g(-_N(gl) and n€ N(ep), The set K[T;§,U)], defined as

K[T:6,U;] = U {xeR:ylt,g,u) = x)
uely
is called the set of reachable states at T from £ at 0, with respect
to Uj. A similar definition corresponds to K[Tin,Us).
The neighborhoods N(ej) and N{ep)} are the logical sets.

3. EXISTENCE OF THE REGION OF INDECISEVENESS
OF THE AUTONOMOUS SUBSYSTEM

1f we define a map m:RxR +R" such that m(x,t) =Yg (t,x}, where Pg{t,x)
is the solution of the autonomous subsystem (2}, it is clear that (2} is a
dynamical system on R™({3],p. 5). Therefore, the regions of attraction Aj
and A, are open invariant neighborhoods of e; and ey, respectively ([3}],
p. 60). Furthermore, the boundary sets JdAj and 9Ap of Ay and Ay, respec-—
tively, are also invariant ({3), p. 13). We will show that there exists
in RM a nonempty set initiating solutions that do not approach either e;
or e;. Let d be any metric compatible with the usual R topology.

Proposition 1. The boundary sets Ay and dAs of Aj and Ay, respec-
tively, are nonempty closed sets.

Proof: The regions of attraction, Ay and Ap, are disjoint since,
otherwise, there exists a g}aRn such that x¢ Al and x€ Ay and consequently
dalbo(t,x),e;] +0 and dlyg(t1x),e,) +0 as t 2o, This implies that ej=es,
which contradicts the assumption that e; and e, are different. Therefore,

A QO Ay=¢. Furthermore, AlQ)Ag#Rn since Ay and A, are open sets. Therefore
oAy and dAz are nonempty. They are also closed by definition of a
boundary set.

Proposition 2. 9A; and 9A; are unstable sets.

Proof: The proof is presented for Aj. Since Ay is an open neighbor-
hood of ey in R", then Ay (58Al=¢, and d[dAj,ey] >0. Let S(3A),¢) denote
the e~neighborhood of 3A; defined as the set

{x€R": a{x,y) <&, y € 32y}

where € € R'. We now choose a € ¢ R such that d[S(BAl,s)hgll >0 and assume
that 3A; is stable ({3],p. 84) . ‘Then, for any z € 9A; there exists a
y{z,e)€ R, Y{(z,e) >0, such that the positive semitraijectories of the
y-neighborhcod of z are in S(BAl,s); that is

+
{x € R": Yoly,t) = %, v€ Slzy), t€ R}IC SO ,¢€).

But, 2 being a point in dA,;, its y-neighborhood S(=,r} mast have at least a
point in Apr say the point w. Conscquently, dldg(w,t),e3] 20 as t > =,




Therofore
+
(xR’ wolw,t) = x, LER' ) £ S(3Ay,¢€),

which is a contradiction. Therefore Ay is unstable.

B Proposition 3. Given X€ Aj, X # e, then the negative limit set,
L (x) ([3}, p. 19, is included in the boundary set Ay,

Proof: By a theorem ([3], p. 90) of dynamical system theory, the

first negative prolongation limit set of x, J7 (%) ({3}, p. 24), and A} are

disjoint since x€A)- e; . Therefore L7 (x)ﬂ A1=¢ since 1 (x)& J (x
Let y¢ L~ (x}; then there exists a sequence {t }ER with tp* -=, such that
Yo (X, tp)» y. The sequence {¥g(x,ty): n=1, 2,.. } is in Al since Ay is an

invariant set. Consequently y is in the closure A) of A; and since y is
not in A;, then y ¢ dA,.

A similar proposition applies to the negative limit set of a point,
other than ej, in the region of attraction A,. '

Proposition 4. Let 9A1#3A;. Then

(1) 1f aAlr\ dA, # 9, BAlr‘aAz is a closed invariant set.
(1) If 8Alf1 dAs is a singleton, then it is an unstable
equilibrium point.
{(iii) If Ay, and A, are the closures of, respectively, A, and A,,
1 2 1 2

then Rn - (51U 52) is also an invariant set.
Proof: (i) BAlrlaAz is a closed invariant set because 3A; and CY:O)
are closed and invariant ([3], p. 12).

(i1} Let {x} =3A;N 3A,; then Yg{x,t) = x for every t€ R
because of (i). Thus x is a critical point by definition.
It is unstable since BAl and BA2 are unstable because of
Proposition_2.
(iii) Aqys Ay and A U Az are 1nvar1ant ([3], p. 12). Therefore,

R - (AlLJAz) is also invariant ([3}), p. 13).

Comments: (1) The propositions of this section can bhe extended in a
straightforward manner to a case of autonomous dynamlcal system with more
than two asymptotically stable equilibrium points.

(2) Since 3A;, 3A; and R —(A1kJA2) are invariant, the set r™- -(Aa;V Ay) ini-

tiates trajectories of the autonomous Subsystem not approachlng either one
of the aqymptotlgally stable equilibrium points, This set is called the
Yegion of indccisiveness.

{3) If the region of indecisiveness is composed of only the boundary sets
of the two regions of attraction, it is unstable.

{4) Trajectories of the autonomous subsystem starting in a region of
attraction of one of the gdesired equilibrium points may reguire an arbi-
trarily long time toreach the logical set within such a region of attract-
ion, since the boundary of a region of attraction is the negative limit set
of the points in the region.

4. DBIXISTENCE OF ADMISSIBLE INPUTS
DETERMINING AMBIGUOUS BEHAVIOR

Assuming that the bistable system state is initially at a point in the
logical set M(e;) [N{e»)], and the input function applied in the interval
fO,T] belongs to the subset Uy {Up] and is followed by the constant input
¢, the system state will change from the initial logical condition to the
other, within the finite interval of duration T, and will permanently re-
main in this second condition. But if the input function is one that would
bring the state of the system at T to a peint in the region of indecisive-
ness, after T the state would remain in this region so that the system will
not ever achieve a logical definition. In this section we show that ‘there




are indeed admissikle input functions that will produce a permanent logic-
ally undefined condition of the bistable system.

We now consider the metric space composed by the input-function set, U,
and the metric

1 m T

d’'[u,v] = J lu, (£)-v, (t) |at .

= . i i
=1 G

For the sake of simplicity 6f notation we will denote it also by U.

Proposition 5. The metric space U is connected,
Proof: Let u and v be any two elements in U. Define the mapping
h: [(0,1]1+ U defined by

H(Slt) = SE(’C) + (l“"S)E’_(t), 5 € [O,l]

Obviocusly h{0,t)=v(t) and h(l,t)=ult), and for se [0,1], h(s,*) is in U.
Furthermore, for given s and r in (0,1), we have

1 nor 1
a [h(x,*),h(x,*)] = & J |,hi(s,t)—hi(r,t)ldt=[5~r| a (u,v]
i=1 ‘0

so that for a given € > 0, there is a &(g) = s/(dl[gfg)) such that

|5vr| < 8{e) implies dl{hjs,°), h(r,*)] < &. Also h{s,*) » v as s + 0 and
h{s,*) > uas s =+ 1. Consequently the mapping h is continuous on [0,1}, and
the metric space U is arcwise connected and therefore connected.

Given an £€ R and a T¢ R we now define a mapping Yo £ U +R” such that
= £
for a u in U wT,gﬁgj = $(T,§,u], the solution of the bistable system (1).
The image ¢T'£ﬁU] of the metric space U with respect to the mapping thg is

connected and further, arcwise connected, since the mapping is continuous.
The connectivity of ¢T’g(u) is used in the next proposition. Notice that
wT'g(U) is the set of reachable states at T from £ at 0, with respect to U,
that is,¢T'€(U) = K[T;£,U].

Proposition 6. If the state of the bistable system is in either N{ej)
N(es) at time 0, then there exist input functions in U that bring the state -
to the boundary sets of the regions of attraction A; and A, at time T.

Proof: We are going to prove the proposition for the set N(e;). Let
the state at time ¢ be §é& N(ej). If the constant input function E_in U is
applied, the state of the system will remain in Ay during all the time of
application of such function, since N{ej) in in A; and this set is invariant
whenever ¢ is applied. Thus Uy g[clC A;. On the other hand, for u in Uy,

¢T, ful is in Ay, because of assumption (5} in Section 2. Therefore, we
have in U elements ¢ and u whose images due to wT,E are in Aj and Ry,
respectively. Therefore, ¢T F{U]ﬁ Al%¢ and wT E[U]O Rn-Al#¢ .  Then,
£ 2 =
wT g[U]() BAI#Q ({4), Thm. 3.19.9). That is, there are some u ¢ U such that
T_[u](-_ 8A., Similarly, ¥ (Ul A #¢ and ¢ _[UID Rn-A #p ; therefore,
- T,E 2 T,& 2

¥ fuin 8A2#¢ . That is, there are some Ve U such that ¢ {v1€ B8A

Tr‘g T,E‘"‘ 2°
" Proposition 7. Let the state of the bistable_system at time O be in
either N(g;) or N{ep). Assume that the closures A; and 52 of the regions
of attraction are disjoint; then there are input functions in U that bring
the state to the subset R'-(A;\UR; ) of R" at time T.
‘Proof: We are going to prove the proposition for N(ey). Let £ &N(g;)
be the system state at time 0, and & represent the set $T’€{U}. From the

proof of the last proposition, we have Bf?il#¢ and E()§2=¢T Now suppose




that EN(RP- (AU Ag))=¢ so that B=(ENA])Y (ENR,) . But EOA] and EOA,
are closed in I and disjoint. Consequently, E is not a connected set,
which is a contradiction of what was found before. Therefore E or
¢T g[U] intersects-R“—(AlkJA2) in a nonempty set. In turn this implies that
’
= L. n - -
u] is in R -(A\NJ A ),
E{_] ( ) 2)

there are some ug U such that wT

r

5. COMMENTS AND CONCLUSIONS

In electronic circuits, in general, there is always present inherent
noise. ‘The reference [2] includes a discussion on the noise effect on the
operation of bistable devices. Due to the noise, and because of the in-
stability of either the region of indecisiveness or subsets of it, the
state of bistable devices, when driven by certain admissible input functions,
stay in a logically undefined condition for an unbounded length of time
rather than forever,

Based on the results of the paper, we conclude that it is not possible
to expect with certainty the achievement of a logical condition by bistable
devices within a fixed time interval, when the allowed input signals are
bounded but otherwise unrestricted.
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FIGURE 1.

Sampling and real-time oscilloscope displays of the response
of an ECL clocked R-S5 flip-flop (Motorola MC1l016) to the clock
input signal being switched off as the data input signal is
changing. 5 nsec./div., 0.25vV/div. for sampling dlsplays,

10 nsec./div., 0.2v/div. for real-time displays.
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FPIGURE 2.

Sampling and real-time oscilloscope displays of the response
" of a TTL R-S flip-flop (constructed by cross-tying two SN7400
NAND gates) to both inputs being changed HIGH simultaneously
(sampling displays) and to a weak pulse applied to one input
{(real-time displays). 5 nsec./div., 1V/div. for sampling
displays; 10. nsec,/div.,, 1lv/div. for real-time displays.




